A Recursive Construction for Low-Complexity Non-coherent Constellations
نویسندگان
چکیده
It is known that at high signal to noise ratio (SNR), or for large coherence interval (T ), a constellations of unitary matrices can achieve the capacity of the non-coherent multiple-antenna system in block Rayleigh flat-fading channel. For a single transmit antenna system, a unitary constellation is simply a collection of T -dimensional unit vectors. Nevertheless, except for a few special cases, the optimal constellations are obtained only through exhaustive or random search, and their decoding complexity is exponential in the rate of the constellation and the length of the coherence interval, T . In this work, we propose a recursive construction method for real-valued single transmit antenna non-coherent constellations, in which a T -dimensional unitary constellation is constructed by using a number of (T − 1)-dimensional unitary or spherical constellations as its equi-latitude subsets. Comparison of the minimum distances achieved by the proposed constructions with the best known packings in G(T, 1) [1] shows that, for practical values of T , the recursive constellations are close to optimal. We also propose a simple low-complexity decoding algorithm for the single-antenna recursive constellations. The complexity of the proposed decoder is linear in the total number of the two-dimensional constituent subsets, which is usually much smaller than the number of the constellation points. Nevertheless, the performance of the suboptimal decoder is similar to the optimal decoder. A comparison of the error rate performance of the recursive constellations with the complex-valued systematic designs of [2] shows that the proposed real-valued constellations have similar performance to the complex-valued systematic designs. The recursive designs also show a significant gain over the low-complexity PSK constellations of [3].
منابع مشابه
Partially Coherent Constellations for Multiple-Antenna Systems
We consider the problem of digital communication in a Rayleigh flat fading environment using a multiple antenna system. We assume that the transmitter doesn’t know the channel coefficients, and that the receiver has only an estimate of them. We further assume that the transmitter and receiver know the statistics of the estimation error. We will refer to this system as a partially coherent syste...
متن کاملPartially Coherent Multiple Antenna Systems: Design Criterion and Construction Methods for Constellations and Coded Modulation
We consider multiple-antenna communication systems in Rayleigh fading channel, where the transmitter does not know the channel coefficients and the receiver has only an estimate of them. We further assume that the transmitter and receiver know the statistics of the estimation error. We refer to this system as partially coherent system, for which we derive the expressions for the optimal detecto...
متن کاملOn design criteria and construction of noncoherent space-time constellations
We consider the problem of digital communication in a Rayleigh flat fading environment using a multiple-antenna system, when the channel state information is available neither at the transmitter nor at the receiver. It is known that at high SNR, or when the coherence interval is much larger than the number of transmit antennas, a constellation of unitary matrices can achieve the capacity of the...
متن کاملOptimal Non-coherent Data Detection for Massive SIMO Wireless Systems with General Constellations: A Polynomial Complexity Solution
Massive MIMO systems can greatly increase spectral and energy efficiency over traditional MIMO systems by exploiting large antenna arrays. However, increasing the number of antennas at the base station (BS) makes the uplink noncoherent data detection very challenging in massive MIMO systems. In this paper we consider the joint maximum likelihood (ML) channel estimation and data detection proble...
متن کاملPower-Efficient Non-coherent Space-Time Constellations
We consider the problem of digital communication in a Rayleigh flat-fading environment using a multiple-antenna system, when the channel state information is available neither at the transmitter nor at the receiver. It is known that at high SNR, or when the coherence interval is much larger than the number of transmit antennas, a constellation of unitary matrices can achieve the capacity of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004